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The stereoselective intramolecular Michael ring closure of
the dipeptide efficiently gives the piperazinone fragment of
pseudotheonamideA1, a serine protease inhibitor from themarine
sponge Theonella swinhoei.

Pseudotheonamides have been isolated by Fusetani and co-
workers1 from the marine sponge Theonella swinhoei collected
off Hachijo-jima Island in Japan. They show interesting serine
protease inhibitory activity. Pseudotheonamides A1 (1) and A2

(2) are the principal members of pseudotheonamides, and have a
unique piperazinone ring system. The configuration of 1 at C5 has
proved to be S while that of 2 is R.
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We have been quite interested in the synthesis of structurally
intriguing and biologically active peptides of aquatic origin,2 and
we already finished the total synthesis of cyclotheonamide B,3 a
macrocyclic analog of pseudotheonamides. Along this line, we
now selected pseudotheonamide A1 (1) as a synthetic target. We
wish to report here an efficient synthesis of the piperazinone
fragment as its protected form 3 (R¼2,6-dichlorobenzyl,
Cl2Bzl).4 The key step of our synthesis is the stereoselective
intramolecular Michael ring closure of the dipeptide 4,5 shown in
Scheme 1.

First, conversion of tert-butyloxycarbonyl(BOC)-L-tyrosine
(5) to the corresponding Weinreb amide 6 by use of methoxy
methyl amine and diethyl phosphorocyanidate (DEPC,
(C2H5O)2P(O)CN)6 afforded the desired 6 together with the O-

phosphorylated one 7,7 as shown in Scheme 2. On the other hand,
O-tert-butyldimethylsilyl(TBS)-L-tyrosine (8), prepared from
5,8 resulted in the formation of a mixture of the O-TBS derivative
9 and the O-deprotected one 6. However, the latter was easily
transformed to the former with TBSCl.

Reduction of 9 with lithium aluminum hydride gave the
aldehyde 10, which underwent the Wittig olefination with
methoxycarbonylmethylenetriphenylphosphorane to give the
(E)-�,�-unsaturated ester 11 as a sole isolable product, as shown
in Scheme 3. Removal of the both Boc and O-TBS functions with
trimethylsilyl trifluoromethanesulfonate (TMSOTf), followed by
the coupling of the resulting amino compound 12 with Boc-D-
phenylalanine (13) smoothly proceeded to yield the dipeptide 14
whose phenolic O-function was phosphorylated. Although the
phosphoryl group might work as a protective group, it is not
tolerant under alkaline conditions and its deprotection seemed to
be rather difficult at some stages of the synthesis of pseudotheo-
namide A1 (1). Thus we decided the change of the protective
group, and the group we selected was the 2,6-dichlorobenzyl one.

O-2,6-Dichlorobenzyl(Cl2Bzl)-Boc-L-tyrosine (15) was
converted to the Weinreb amide 16, which was reduced with
lithium aluminum hydride to give the aldehyde 17. The Wittig
olefinationwith the phosphorane, acidic treatment of the resulting
�,�-unsaturated ester 18, followed by the coupling of the
deprotected amine 19 with Boc-D-phenylalanine (13) efficiently
afforded the �,�-unsaturated ester 20 (Scheme 3).

After acidic removal of the Boc group followed by
neutralization, the intramolecular Michael ring closure of the
resulting dipeptide 4 was investigated under several reaction
conditions. So far, the reaction at room temperature in methanol
gave the best result, and the required piperazinone derivative 3
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was obtained in 77% yield,9;10 (Scheme 4). The diastereoisomer
3a, a component of pseudotheonamide A2 (2), was also obtained
under some reaction conditions. Addition of triethylamine to
methanol increased this diastereoisomer 3a (3, 46%; 3a, 41%).

Interestingly, the intermolecularMichael addition of the�,�-
unsaturated ester 18 with D-phenylalanine trimethylsilylethyl
ester (21), prepared from 13, did not proceed at all under
analogous reaction conditions to give the Michael adduct 22, as
shown in Scheme 5.

Thus, we could establish a convenient route to the
piperazinone ring component of pseudocyclotheonamide A1 by
use of an intramolecularMichael ring closure as the key step. The
method developed here will offer the general procedure for the
construction of the piperazinone skeleton. The total synthesis of
pseudotheonamide A1 (1) is now under way.
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